

HANCE 2000 LED Spotlight 2 Circuit / 2 Neutral Line Voltage Track

FEATURES:

- · Designed in Spain; Assembled in the USA
- Cast aluminum housing provides thermal management
- Integral driver eliminates the need for an external driver box or remote transformer
- Form fitting curved stem is designed to be an integral part of the housing for use as a downlight
- Friction/Locking 90° tilt and 355° orientation
- Accepts two optical accessories
- Track adaptor allows for 2 circuits with separate neutrals for Forward Phase or Reverse Phase dimming

HANCE 2000 // SPECIFICATION SHEET

PROJECT NAME

TYPE

CATALOG NAME

DATE

Specifications

HOUSING	2 piece cast aluminum construction					
	Textured Whit	Textured White (RAL 9010)				
LUMINAIRE FINISH	Graphite (RAL	9011)				
TRACK ADAPTER	120V or 277V	120V or 277V 2 Circuit / 2 Neutral				
	SS		13 watts			
INPUT WATTS	SP/MF/FL		18 watts			
CERTIFICATION	CSA / US cert	CSA / US certified for Dry Locations				
PROTECTION LEVEL	IP20	IP20				
WEIGHT	1.43 lbs 650	1.43 lbs 650g				
COLOR RENDERING INDEX	RA > 90 3 SDCM					
R9 VALUE	60					
		_	CCT	Х	Y	
		_	2700	0.4577	0.4099	
CHROMATICITY	Center point c	of Ellipse	3000	0.4338	0.4030	
			3500	0.4073	0.3917	
			4000	0.3818	0.3797	
LUMEN MAINTENANCE	L70 50,000 H	rs				
	SS	Total In	ternal Reflecto	r Lens		
OPTICS	SP/MF/FL	Facete	d Aluminum Ar	odized Refle	ctor	
	SS	64 - 68	lumens/watt			
EFFICACY	SP/MF/FL	82 - 96	lumens/watt			
	Beam	Degrees	CBCP	Efficacy		
	SuperSpot	10	16,311	68 lm/w		
PERFORMANCE (3000K)	Spot	16	8,935	90 lm/w		
	Med Flood	24	5,707	91 lm/w		
	Flood	36	3,007	84 lm/w		

www.nordeon-usa.com

In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.nordeon-usa.com are the most recent ones available.

Nescription

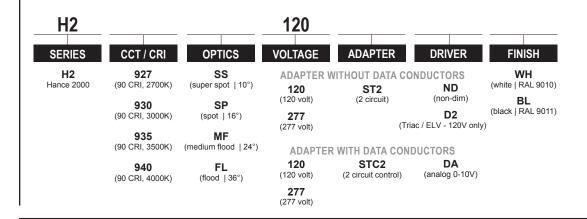
The HANCE 2000 series track mounted spotlights is part of the Hance family, offering a variety of sizes and source lumen packages from 1000 up to 4000 lumens. Assorted reflectors, lenses, and accessories provide optical flexibility. It is available in 90CRI with color temperatures of 2700K, 3000K, 3500K, or 4000K, as well as different aperture angles for super-spot, spot, medium flood, and flood distributions.

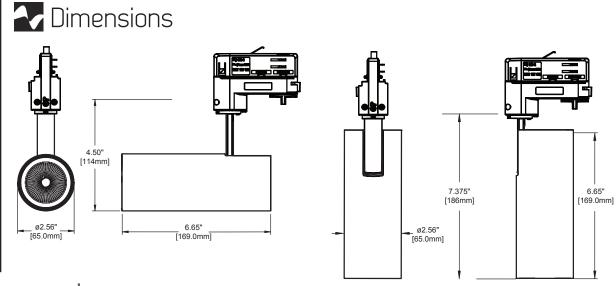
The Super-Spot 10° beam is achieved using a total internal reflection (TIR) lens, providing minimal spill light. Spot (17°), medium flood (24°), and flood (36°) beams utilize faceted exchangable reflectors. HANCE includes an array of optional accessories including films for softening or elliptical beam shaping, hexcell louvers, and deco rings.

HANCE was designed to provide minimal visual impact by integrating the driver into a single unit, eliminating the need for a separate driver enclosure. The cast aluminum housing additionally acts to provide thermal management for the LED. The contoured swivel arm allows the stem to become an integral part of the spotlight when used as a downlight.

The body is available in textured black or textured white finishes with decorative rings that hold the reflector and accessories. The decorative rings are available in four finishes: copper, silver, textured black and textured white.

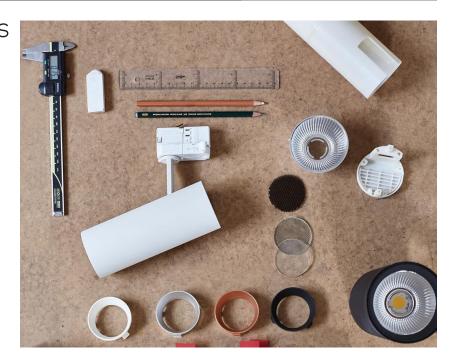
www.nordeon-usa.com


In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.nordeon-usa.com are the most recent ones available.


By Nordeon USA

HANCE 2000 // SPECIFICATION SHEET

Crdering - Track Spotlight - 2 Circuit - 2 Neutral Adapter


www.nordeon-usa.com

In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.nordeon-usa.com are the most recent ones available. 3/6

HANCE 2000 // SPECIFICATION SHEET

Crdering - Accessories REFLECTORS OPTICAL DECO RINGS HSR50SP HSSL50 HSD65BK (soft lens film) (spot | 160) (black) HSD65WH HSEL50 HSR50MF (elliptical lens film) (medium flood | 240) (white) HSHO50 HSR50FL HSD65SV (hexcel louver) (flood | 360) (silver) HSTR50 HSD65CP (clear lens) (copper)

Dimming

CODE	ADAPTER	TRACK	CONTROL TYPE	DIMMING CURVE	DIM LEVEL
ND	ALL	ALL	None	N/A	100%
D2	ST2	2 Circuit / 2 Neutral (120V only)	Triac Forward Phase	Linear	≥1%
D2	ST2	2 Circuit / 2 Neutral (120V only)	ELV Reverse Phase	Linear	≥1%
DA	STC2	2 Circuit / 2 Neutral w/ Data	Analog 0-10V	Linear	≥1%

www.nordeon-usa.com

In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.nordeon-usa.com are the most recent ones available.

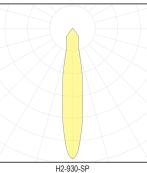
By Nordeon USA

HANCE 2000 // SPECIFICATION SHEET

Photometrics

Super Spot

H2-930-SS	90CRI	
Center Beam Candlepow	16,311	
Beam (Degrees)	9.9	
Lumen Output	880	
Proration Factors		
ССТ	MF	
2700K	0.93	
3000K	1.00	
3500K	1.00	



Feet		Footc	andles
Distance	Dia	Center	Edge
4	1.4	1019	495
6	2.1	453	220
8	2.8	255	124
10	3.5	163	79
12	4.2	113	55
14	4.9	83	40
16	5.6	64	31
18	6.3	50	24
20	7.0	0	0

_		

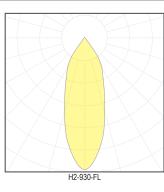
H2-930-SP	90CRI	3000K
Center Beam Candlepower		8,934
Beam (Degrees)		16.5
Lumen Output		1,613

Proration Factors	
CCT	MF
2700K	0.96
3000K	1.00
3500K	1.01
4000K	1.03

Feet		Footca	andles
Distance	Dia	Center	Edge
4	2.4	558	257
6	3.6	248	114
8	1.7	140	64
10	5.9	89	41
12	7.1	62	29
14	8.3	46	21
16	9.5	35	16
18	10.7	28	13
20	11.8	22	10

Medium Flood

H2-930-MF	90CRI	3000K
Center Beam Candlepo	wer	5,707
Beam (Degrees)		23.8
Lumen Output		1,650


Proration Factors	
CCT	MF
2700K	0.96
3000K	1.00
3500K	1.01
4000K	1.03

	+		
	$\times \wedge$		
	$\sim \times / /$		
$\land \rightarrow$			
$\langle \rangle$	<		
\land			
\sim			
		\checkmark	
/	110.0	000 145	The second secon
	H2-9	930-MF	

Feet		Footca	andles
Distance	Dia	Center	Edge
4	3.5	357	149
6	5.3	159	66
8	7.1	89	37
10	8.8	57	24
12	10.6	40	17
14	12.3	29	12
16	14.1	22	9
18	15.9	18	7
20	17.6	14	6

H2-930-FL	90CRI	3000K
Center Beam Candlepower		3,007
Beam (Degrees)		35.8
Lumen Output		1,508

CCT	MF
2700K	0.96
3000K	1.00
3500K	1.01
4000K	1.03

Feet		Footcandles	
Distance	Dia	Center	Edge
4	5.8	188	62
6	8.7	84	27
8	11.5	47	15
10	14.4	30	10
12	17.3	21	7
14	20.2	15	5
16	23.1	12	4
18	26.0	9	3
20	28.8	8	2

www.nordeon-usa.com

In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.nordeon-usa.com are the most recent ones available.

www.nordeon-usa.com

In a continuing effort to offer the best product possible, we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.nordeon-usa.com are the most recent data available.